Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Radiat Biol ; 100(4): 584-594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166485

RESUMO

PURPOSE: AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and is essential for controlling mitochondrial homeostasis. Here, we investigated the regulatory mechanisms involved in AMPK activation to elucidate how networks of intracellular signaling pathways respond to stress conditions. MATERIALS AND METHODS: Inhibitors of ATM, DNA-PK, and AKT were tested in normal TIG-3 and MRC-5 human fibroblasts to determine which upstream kinases are responsible for AMPK activation. SV40 transformed-human ATM-deficient fibroblasts (AT5BIVA) and their ATM-complemented cells (i.e., AT5BIVA/ATMwt) were also used. Protein expression associated with AMPK signaling was examined by immunostaining and/or Western blotting. RESULTS: Radiation-induced nuclear DNA damage activates ATM-dependent AMPK signaling pathways that regulate mitochondrial quality control. In contrast, hypoxia and glucose starvation caused ATP depletion and activated AMPK via a pathway independent of ATM. DNA-PK and AKT are not involved in AMPK-mediated mitochondrial signaling pathways. CONCLUSION: Activation of the AMPK signaling pathway differs depending on the stimulus. Radiation activates AMPK through two pathways: depletion of ATP-mediated LKB1 signaling and nuclear DNA damage-induced ATM signaling. Nuclear DNA damage signaling to mitochondria therefore plays a pivotal role in determining the cell fates of irradiated cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Quinase Ativada por DNA , Humanos , Proteína Quinase Ativada por DNA/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Mitocôndrias/metabolismo , Dano ao DNA , Trifosfato de Adenosina/metabolismo , DNA
2.
Med Mol Morphol ; 56(4): 239-249, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405470

RESUMO

The glycocalyx (GCX) covers the luminal surface of blood vessels and regulates vascular permeability. As GCX degradation predicts various types of vasculopathy, confirming the presence of this structure is useful for diagnosis. Since the GCX layer is very fragile, careful fixation is necessary to preserve its structure. We explored appropriate and feasible methodologies for visualizing the GCX layer using lung tissue specimens excised from anesthetized mice. Each specimen was degassed and immersed in Alcian blue (ALB) fixative solution, and then observed using electron microscopy. Specimens from septic mice were prepared as negative GCX controls. Using these immersion-fixed specimens, the GCX layer was successfully observed using both transmission and scanning electron microscopy; these observations were similar to those obtained using the conventional method of lanthanum perfusion fixation. Spherical aggregates of GCX were observed in the septic mouse specimens, and the GCX density was lower in the septic specimens than in the non-septic specimens. Of note, the presently reported methodology reduced the specimen preparation time from 6 to 2 days. We, therefore, concluded that our novel method could be applied to human lung specimens and could potentially contribute to the further elucidation of vasculopathies.


Assuntos
Elétrons , Glicocálix , Camundongos , Humanos , Animais , Endotélio Vascular , Microscopia Eletrônica de Varredura , Pulmão
3.
J Oral Biosci ; 65(1): 111-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640838

RESUMO

OBJECTIVES: Glycocalyx lines the vascular intraluminal space that regulates fluid movement between the intra- and extra-vascular compartments. The depletion of glycocalyx (GCX) is associated with leukocyte accumulation, possibly causing the endothelial cells to become hyperpermeable in various organs, including oral tissues. Whether neutrophils or macrophages are responsible for developing interstitial edema remains controversial. We explored the pathophysiological mechanism of interstitial edema by examining the role of reactive neutrophils and macrophages and their interactions with GCX. METHODS: An anti-MHC class I antibody was administered intravenously to male BALB/c mice to induce pulmonary edema. Pulmonary edema was evaluated by measuring the lung wet-to-dry weight ratio. Changes in the GCX were evaluated by electron microscopy and measurements of the serum level of soluble syndecan-1. Heparin sulfate was administered to examine its protective effect on the GCX. The macrophages were depleted using clodronate to examine their role in developing edema. RESULTS: The GCX degradation induced by the anti-MHC class I antibody was accompanied by increased serum syndecan-1 and heparan sulfate levels. Macrophage depletion inhibited the development of pulmonary edema, and the administration of supplemental heparin suppressed the edema. CONCLUSIONS: We demonstrated that the degradation of the GCX induced by the anti-MHC class I antibody was suppressed by macrophage depletion. These results suggest that macrophages may play a key role in interstitial edema. Heparin inhibited both the degradation of the GCX and interstitial edema. This study's results may be extrapolated to develop an interventional strategy for inhibiting interstitial edema in various organs.


Assuntos
Células Endoteliais , Edema Pulmonar , Camundongos , Animais , Masculino , Células Endoteliais/metabolismo , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Glicocálix/metabolismo , Edema Pulmonar/metabolismo , Heparina/metabolismo , Heparina/farmacologia
4.
J Anesth ; 37(1): 104-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427094

RESUMO

PURPOSE: To investigate vascular endothelial dysfunction based on glycocalyx impairment in massive hemorrhage and to evaluate fluid therapy. METHODS: In this randomized controlled animal study, we withdrew 1.5 mL blood and administered 1.5 mL resuscitation fluid. Mice were divided into six groups according to the infusion type and administration timing: NS-NS (normal saline), NS-HES ([hydroxyethyl starch]130), HES-NS, NS-ALB (albumin), ALB-NS, and C (control) groups. RESULTS: The glycocalyx index (GCXI) of a 40-µm artery was significantly larger in group C than in other groups (P < 0.01). Similarly, the GCXI for a 60-µm artery was significantly higher in group C than in NS-NS (P ≤ 0.05), NS-HES (P ≤ 0.01), and NS-ALB groups (P ≤ 0.05). The plasma syndecan-1 concentration, at 7.70 ± 5.71 ng/mL, was significantly lower in group C than in group NS-NS (P ≤ 0.01). The tetramethylrhodamine-labeled dextran (TMR-DEX40) fluorescence intensity in ALB-NS and HES-NS groups and the fluorescein isothiocyanate-labeled hydroxyethyl starch (FITC-HES130) fluorescence intensity in NS-HES and HES-NS groups were not significantly different from those of group C at any time point. FITC-HES130 was localized on the inner vessel wall in groups without HES130 infusion but uniformly distributed in HES130-treated groups in intravital microscopy. FITC-FITC-HES130 was localized remarkably in the inner vessel walls in group HES-NS in electron microscopy. CONCLUSIONS: In an acute massive hemorrhage mouse model, initial fluid resuscitation therapy with saline administration impaired glycocalyx and increased vascular permeability. Prior colloid-fluid administration prevented the progression of glycocalyx damage and improve prognosis. Prior HES130 administration may protect endothelial cell function.


Assuntos
Choque Hemorrágico , Animais , Camundongos , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/farmacologia , Glicocálix , Derivados de Hidroxietil Amido , Microscopia Intravital , Ressuscitação
5.
Int J Radiat Biol ; 99(5): 769-778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36383181

RESUMO

PURPOSE: In living organisms, sensitivity to radiation increases in the presence of oxygen (O2) compared with that under anoxic or hypoxic conditions. Here, we investigated whether O2 concentration affected the response of mitochondria to X-rays radiation, which is associated with tumor microenvironment formation via fibroblast activation in radiation-related tumors. MATERIALS AND METHODS: O2 concentrations were controlled at <5% (internal environmental oxygen condition) or anoxic levels during culture of normal human diploid lung fibroblasts TIG-3 and MRC-5. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining or western blotting. RESULTS: Induction of DNA damage (marker: γ-H2A histone family member X) and mitochondrial signaling (AMP-activated protein kinase), suppression of mitochondrial metabolic activity, and generation of reactive oxygen species occurred with radiation in cells cultured under 5% and 20% O2 conditions. However, reducing O2 concentration mitigated the effects of radiation on cell growth, mitochondrial damage (parkin), induction of antioxidant responses (nuclear factor E2-related factor 2), and fibroblast activation (α-smooth muscle actin). Radiation did not affect the markers used in this study in the absence of O2. CONCLUSION: O2 concentration affected the response of mitochondria to radiation and reactive oxygen species-mediated fibroblast activation. Higher O2 concentrations enhanced the effects of radiation on mitochondria in human fibroblasts. In vitro studies may overestimate in vivo radiation effects due to high O2 concentrations.


Assuntos
Mitocôndrias , Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/metabolismo , Raios X , Mitocôndrias/metabolismo , Fibroblastos/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia
6.
J Radiat Res ; 64(2): 250-260, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36579461

RESUMO

Intermediate frequency magnetic fields (IF-MFs) at ~85 kHz are one of the components of wireless power transfer (WPT) systems. However, the available data needed for the assessment of the safety of organisms from IF-MF exposure are scarce. Thus, there is an imminent need to accumulate evidence-based assessment data. In particular, if humans are exposed to IF-MF due to an accident or trouble, they are at increased risk of being exposed to high-intensity IF-MF within a short period. The already existing exposure system was improved to a system that could intermittently expose animals at 3 s intervals. This system allows the exposure of a mouse to high-intensity IF-MF (frequency: 82.3 kHz; induced electric field: 87 V/m, which was 3.8 times the basic restriction level for occupational exposure in the ICNIRP guideline), while regulating the heat generated by the coil. In vivo genotoxicity after IF-MF exposure was assessed using micronucleus (MN) test, Pig-a assay, and gpt assay. The results of MN test and Pig-a assay in hematopoietic cells revealed that neither the reticulocytes nor the mature erythrocytes exhibited significant increases in the IF-MF-exposed group compared with that in the sham-exposed group. In germ cells, MN test and gpt assay outcomes showed that IF-MF exposure did not cause any genetic or chromosomal abnormality. Based on these data, there was no genotoxic effect of our set IF-MF exposure on somatic and germ cells. These findings can contribute to the widespread use of WPT systems as effective data of IF-MF safety assessment.


Assuntos
Campos Magnéticos , Exposição Ocupacional , Camundongos , Humanos , Animais , Dano ao DNA , Testes para Micronúcleos , Células Germinativas , Campos Eletromagnéticos/efeitos adversos
7.
Antioxidants (Basel) ; 11(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36552537

RESUMO

In the present study, we evaluated the acute response of mice exposed to IQOS aerosol, a brand-name heated tobacco product (HTP), in the lung tissue. First, the thiobarbituric acid-reactive substances (TBA-RS) value was measured as an index to assess oxidative stress, and a significant increase was observed after exposure, followed by a significant increase in the total lung GSH concentration. The stress responses induced by IQOS aerosols was then analyzed by focusing on the changes in Nrf2 and ATF4, which are transcription factors that induce the expression of genes involved in GSH biosynthesis or metabolism. Although Nrf2 activation was not observed, significant accumulation of ATF4 in the nuclear fraction was noted three hours after exposure to IQOS aerosols. Upon an examination of changes in factors in the GSH biosynthetic system, a significant increase in cystine concentration in the lung tissue was measured, and an increase in xCT expression level was observed in the cell membrane fraction three-six hours after IQOS exposure. Furthermore, characteristic changes in HO-1, a stress-response protein regulated by ATF4, was discovered six hours after IQOS exposure. Moreover, analysis of the upstream ATF4 regulatory system revealed that phosphorylation of eIF2α was enhanced in the lung cytoplasmic fraction three hours after exposure to IQOS aerosols. These findings suggest that ER stress might be induced as an early response to IQOS aerosol exposure, accompanied by the activation of the eIF2α-ATF4 axis. These intracellular changes have also been reported after exposure to combustible cigarette smoke. Thus, the acute response found in the lungs of mice in the present study demonstrate that the inhalation of aerosols from IQOS elicits a biological response similar to that of combustible cigarette smoke. In conclusion, our results provide evidence that the biological effects of HTPs, such as IQOS, cannot be ignored in the lungs.

8.
Biochem Biophys Res Commun ; 610: 43-48, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462100

RESUMO

Although the amount of chemicals in heated tobacco products (HTPs) aerosols is reduced compared to conventional combustible cigarette smoke, the association between HTPs and reduced health effects remains unclear. In this study, we hypothesized that exposure to IQOS, an HTP, would increase oxidative stress and affect the secretion of inflammatory cytokines. First, C57BL/6 mice exposed to IQOS aerosols were evaluated to determine the adverse effects of IQOS exposure. IQOS exposure significantly decreased the concentration of GSH in alveolar macrophages in a dose-dependent manner and increased the percentage of GSSG in lung tissues. These results indicate that IQOS exposure increases oxidative stress, and GSH is consumed to remove oxidative stress. In addition, foamy alveolar macrophages were observed in the bronchial alveolar lavage fluid after IQOS exposure. Although the concentration of inflammatory cytokines, IL-6, and GM-CSF, in the plasma increased significantly after IQOS exposure, there were no significant changes in other cytokines. These results indicate that short-term exposure to IQOS aerosols may increase oxidative stress and induce the secretion of inflammatory cytokines. Lastly, the longer-term effects of IQOS aerosols exposure should be evaluated in the future.


Assuntos
Produtos do Tabaco , Aerossóis , Animais , Citocinas , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Nicotiana , Produtos do Tabaco/efeitos adversos
9.
J Radiat Res ; 63(2): 183-191, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977941

RESUMO

The glutathione (GSH) redox control is critical to maintain redox balance in the body's internal environment, and its perturbation leads to a dramatic increase in reactive oxygen species (ROS) levels and oxidative stress which have negative impacts on human health. Although ionizing radiation increases mitochondrial ROS generation, the mechanisms underlying radiation-induced late ROS accumulation are not fully understood. Here we investigated the radiation effect on GSH redox reactions in normal human diploid lung fibroblasts TIG-3 and MRC-5. Superoxide anion probe MitoSOX-red staining and measurement of GSH peroxidase (GPx) activity revealed that high dose single-radiation (SR) exposure (10 Gy) increased mitochondrial ROS generation and overall oxidative stress in parallel with decrease in GSH peroxidase (GPx) activity, while GSH redox control was effective after exposure to moderate doses under standard serum conditions. We used different serum conditions to elucidate the role of serum on GSH redox reaction. Serum starvation, serum deprivation and DNA damage response (DDR) inhibitors-treatment reduced the GPx activity and increased mitochondrial ROS generation regardless of radiation exposure. Fractionated-radiation was used to evaluate the radiation effect on GSH reactions. Repeated fractionated-radiation induced prolonged oxidative stress by down-regulation of GPx activity. In conclusion, radiation affects GSH usage according to radiation dose, irradiation methods and serum concentration. Radiation affected the GPx activity to disrupt fibroblast redox homeostasis.


Assuntos
Antioxidantes , Fibroblastos/efeitos da radiação , Glutationa , Antioxidantes/metabolismo , Fibroblastos/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
Transplantation ; 106(5): 963-972, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241985

RESUMO

BACKGROUND: The current standard immunosuppressive regimens, calcineurin inhibitors, have diabetogenic and anti-vascularization effects on islet grafts. KRP-203, a sphingosine-1-phosphate functional antagonist, exerts its immunomodulatory function through lymphocyte sequestration. However, the effect of this antagonist on islets is unclear. We examined the effect of KRP-203 on the islet function and vascularization and sought a calcineurin-free regimen for islet allotransplantation. METHODS: KRP-203 was administered for 14 d to mice, then diabetogenic effect was evaluated by blood glucose levels and a glucose tolerance test. Static glucose stimulation, the breathing index, and insulin/DNA were examined using isolated islets. Islet neovascularization was evaluated using a multiphoton laser scanning microscope. After islet allotransplantation with either KRP-203 alone, sirolimus alone, or both in combination, the graft survival was evaluated by blood glucose levels and immunohistochemical analyses. A mixed lymphocyte reaction was also performed to investigate the immunologic characteristics of KRP-203 and sirolimus. RESULTS: No significant differences in the blood glucose levels or glucose tolerance were observed between the control and KRP-203 groups. Functional assays after islet isolation were also comparable. The multiphoton laser scanning microscope showed no inhibitory effect of KRP-203 on islet neovascularization. Although allogeneic rejection was effectively inhibited by KRP-203 monotherapy (44%), combination therapy prevented rejection in most transplanted mice (83%). CONCLUSIONS: KRP-203 is a desirable immunomodulator for islet transplantation because of the preservation of the endocrine function and lack of interference with islet neovascularization. The combination of KRP-203 with low-dose sirolimus may be promising as a calcineurin-free regimen for islet allotransplantation.


Assuntos
Glicemia , Diabetes Mellitus , Animais , Glucose/farmacologia , Imunossupressores/farmacologia , Camundongos , Sirolimo/farmacologia , Compostos de Sulfidrila
11.
Genes (Basel) ; 14(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672786

RESUMO

Mitochondria are responsible for controlling cell death during the early stages of radiation exposure, but their perturbations are associated with late effects of radiation-related carcinogenesis. Therefore, it is important to protect mitochondria to mitigate the harmful effects of radiation throughout life. The glutathione peroxidase (GPx) enzyme is essential for the maintenance of mitochondrial-derived reactive oxygen species (ROS) levels. However, radiation inactivates the GPx, resulting in metabolic oxidative stress and prolonged cell injury in irradiated normal human fibroblasts. Here, we used the GPx activator N-acetyl-5-methoxy-tryptamine (melatonin) and a mitochondria-targeted mimic of GPx MitoEbselen-2 to stimulate the GPx. A commercial GPx activity assay kit was used to measure the GPx activity. ROS levels were determined by using some ROS indicators. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining. Concurrent pre-administration or post-administration of melatonin or MitoEbselen-2 with radiation maintained GPx activity and ROS levels and suppressed mitochondrial radiation responses associated with cellular damage and radiation-related carcinogenesis. In conclusion, melatonin and MitoEbselen-2 prevented radiation-induced mitochondrial injury and metabolic oxidative stress by targeting mitochondria. These drugs have the potential to protect against acute radiation injury and late effects of carcinogenesis in a variety of radiation scenarios assuming pre-administration or post-administration.


Assuntos
Melatonina , Protetores contra Radiação , Humanos , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Protetores contra Radiação/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo
12.
Front Cardiovasc Med ; 8: 727888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796208

RESUMO

According to the "obesity paradox," for severe conditions, individuals with obesity may be associated with a higher survival rate than those who are lean. However, the physiological basis underlying the mechanism of the obesity paradox remains unknown. We hypothesize that the glycocalyx in obese mice is thicker and more resistant to inflammatory stress than that in non-obese mice. In this study, we employed intravital microscopy to elucidate the differences in the vascular endothelial glycocalyx among three groups of mice fed diets with different fat concentrations. Male C57BL/6N mice were divided into three diet groups: low-fat (fat: 10% kcal), medium-fat (fat: 45% kcal), and high-fat (fat: 60% kcal) diet groups. Mice were fed the respective diet from 3 weeks of age, and a chronic cranial window was installed at 8 weeks of age. At 9 weeks of age, fluorescein isothiocyanate-labeled wheat germ agglutinin was injected to identify the glycocalyx layer, and brain pial microcirculation was observed within the cranial windows. We randomly selected arterioles of diameter 15-45 µm and captured images. The mean index of the endothelial glycocalyx was calculated using image analysis and defined as the glycocalyx index. The glycocalyx indexes of the high-fat and medium-fat diet groups were significantly higher than those of the low-fat diet group (p < 0.05). There was a stronger positive correlation between vessel diameter and glycocalyx indexes in the high-fat and medium-fat diet groups than in the low-fat diet group. The glycocalyx indexes of the non-sepsis model in the obese groups were higher than those in the control group for all vessel diameters, and the positive correlation was also stronger. These findings indicate that the index of the original glycocalyx may play an important role in the obesity paradox.

13.
Front Cardiovasc Med ; 8: 730298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595224

RESUMO

The endothelial glycocalyx (GCX) plays a key role in the development of organ failure following sepsis. Researchers have investigated GCX degradation caused by pathological conditions. Nonetheless, the GCX restoration process remains poorly understood. Herein, we developed a model in which GCX restoration could be reproduced in mice using in vivo imaging and a dorsal skinfold chamber (DSC). The severity of sepsis was controlled by adjusting the dose of lipopolysaccharide (LPS) used to trigger GCX degradation in BALB/c mice. We evaluated the GCX thickness, leukocyte-endothelial interactions, and vascular permeability using in vivo imaging through DSC under intravital microscopy. The plasma concentration of syndecan-1(Sdc-1), a GCX structural component, was also determined as a marker of GCX degradation. Thus, we developed a reproducible spontaneous GCX recovery model in mice. Degraded GCX was restored within 24 h by the direct visualization of the endothelial GCX thickness, and leukocyte-endothelial interactions. In contrast, indirectly related indicators of recovery from sepsis, such as body weight and blood pressure, required a longer recovery time. This model can be used to study intractable angiopathy following sepsis.

14.
Environ Health Prev Med ; 26(1): 89, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517815

RESUMO

BACKGROUND: In recent years, heated tobacco products (HTPs), which are widely used in Japan, have been sold by various brands using additives such as flavors. It has been reported that the components of mainstream smoke are different from those of conventional cigarettes. In this study, we established an analytical method for furans and pyridines in the mainstream smoke, which are characteristic of HTPs and particularly harmful among the generated components, and investigated the amount of component to which the smokers are exposed. METHODS: We established a simple analytical method for simultaneous analysis of gaseous and particulate compounds in the mainstream smoke of HTPs (IQOS, glo, ploom S) in Japan by combining a sorbent cartridge and glass fiber filter (Cambridge filter pad (CFP)). Both the sorbent cartridge and CFP were extracted using 2-propanol and analyzed via GC-MS/MS to determine the concentration of furans and pyridines generated from each HTP. RESULTS: The results showed that the levels of target furans such as furfural, 2-furanmethanol, 2(5H)-furanone, and 5-methylfurfural tended to be higher in the mainstream smoke of glo than in standard cigarettes (3R4F). Pyridine, which is generated at a high level in 3R4F as a combustion component, and 4-ethenylpyridine (EP), which is a known marker of environmental tobacco smoke, were detected. Among these components, 2-furanmethanol and pyridine are classified as Group 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer (IARC). Therefore, it is possible that they will contribute to the health effects caused by use of HTPs. CONCLUSIONS: Using the new collection and analytical method for furans and pyridines in the mainstream smoke of HTPs, the level of each compound to which smokers are exposed could be clarified. By comprehensively combining information on the amount of ingredients and toxicity, it will be possible to perform a more detailed calculation of the health risks of using HTPs. In addition, the components detected in this study may be the causative substances of indoor pollution through exhaled smoke and sidestream smoke; therefore, environmental research on the chemicals generated from HTPs would be warranted in future studies.


Assuntos
Furanos/análise , Piridinas/análise , Fumaça/análise , Produtos do Tabaco , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Japão , Espectrometria de Massas em Tandem
15.
Nicotine Tob Res ; 23(12): 2145-2152, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34111284

RESUMO

INTRODUCTION: There is no standardized aerosol exposure apparatus to deliver heated tobacco products (HTPs) for in vivo experiments. Therefore, we developed a novel HTPs aerosol exposure apparatus for mice and demonstrated that nicotine and other chemicals in HTPs aerosol generated by the apparatus can be delivered to mice which replicate human smoke. AIMS AND METHODS: The amounts of nicotine, tar, and carbon monoxide (CO) in IQOS (Marlboro Regular HeatSticks) aerosol generated by two types of apparatuses were determined. C57BL/6N mice were exposed to IQOS aerosol, followed by determination of the urinary nicotine metabolites. Further, the skin surface temperature of mice was monitored to confirm the vasoconstriction action of nicotine. RESULTS: The amount of chemicals in IQOS aerosol by the novel air push-in inhalation apparatus for HTPs (APIA) was equivalent to that of the analytical vaping machine (LM4E) (1.60 ± 0.08 [APIA] vs. 1.46 ± 0.07 mg/stick [LM4E] in nicotine and 0.55 ± 0.04 [APIA] vs. 0.45 ± 0.01 mg/stick [LM4E] in CO). After mice were exposed to IQOS aerosol by APIA, the urinary nicotine metabolite levels were determined; peak values in cotinine and 3-hydroxycotinine (3-HC) were 6.82 µg/mg creatinine at 1 hour after exposure and 32.9 µg/mg creatinine at 2 hours after exposure, respectively. The skin surface temperature decreased and was lower (33.5°C ± 0.5°C) at 30 minutes than before exposure (37.6°C ± 0.8°C). CONCLUSIONS: The new apparatus for HTPs aerosol exposure to mice showed good performances in terms of both chemical analysis of collected aerosol and fluctuations in the urinary nicotine metabolites. IMPLICATIONS: The APIA reported in this study can expose small animals to HTPs aerosol, including nicotine and other chemical substances as same amounts as LM4E and replicate actual human smoking process by in vivo experiments. Therefore, the experiments using APIA can provide evidence to assess the health risks of HTPs use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Aerossóis/análise , Animais , Camundongos , Camundongos Endogâmicos C57BL , Nicotina , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-33678242

RESUMO

Time varying magnetic fields (MFs) are used for the wireless power-transfer (WPT) technology. Especially, 85 kHz band MFs, which are included in the intermediate frequency (IF) band (300 Hz - 10 MHz), are commonly used WPT system for charging electric vehicles. Those applications of WPT technology have elicited public concern about health effects of IF-MF. However, existing data from health risk assessments are insufficient and additional data are needed. We assessed the genotoxic effects of IF-MF exposure on erythroid differentiation in mice. A high-intensity IF-MF mouse exposure system was constructed to induce an average whole-body electric field of 54.1 V/m. Blood samples were obtained from male mice before and after a 2-week IF-MF exposure (1 h/day, total: 10 h); X-irradiated mice were used as positive controls. We analyzed the blood samples with the micronucleus (MN) test and the Pig-a mutation assay. No significant differences were seen between IF-MF-exposed and sham-exposed mice in the frequencies of either MN or Pig-a mutations in mature erythrocytes and reticulocytes. IF-MF exposure did not induce genotoxicity in vivo under the study conditions (2.36× the basic restriction for occupational exposure, 22.9 V/m, in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines). The absence of significant biological effects due to IF-MF exposure supports the practical application of this technology.


Assuntos
Dano ao DNA , Exposição Ambiental/efeitos adversos , Campos Magnéticos/efeitos adversos , Tecnologia sem Fio , Animais , Masculino , Camundongos
17.
Cell Cycle ; 19(23): 3375-3385, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33225802

RESUMO

We recently made an important discovery that radiation induces myofibroblasts, which play a role in radiation-related carcinogenesis via tumor microenvironment formation. Here, we investigated the threshold dose and the mechanisms of myofibroblast induction to assess adverse radiation effects on normal cells. Single-dose of healthy human fibroblasts in vitro promotes myofibroblast induction at high doses (≥ 5 Gy). In contrast, repeated low dose of fractionated radiation is at least equivalent to high-dose single radiation regarding myofibroblast induction. ROS play a pivotal role in the process of myofibroblast induction in normal tissue injury. Antioxidants, such as epicatechin and ascorbic acid can prevent myofibroblast induction by scavenging ROS. We further investigated the role of DNA damage responses (DDR) on myofibroblast induction. Blocking the DDR using DNA-PK or AKT inhibitors enhanced cellular sensitivity to radiation and facilitated myofibroblast induction, whereas an ATM inhibitor also enhanced radiation sensitivity but abrogated ROS accumulation and myofibroblast induction. In contrast to standard culture conditions, myofibroblasts remained after low or moderate doses of radiation (below 2.5 Gy) under growth-restricted conditions. In conclusion, the recovery of damaged cells from radiation is essential for myofibroblast clearance, which restores stromal cell dormancy and prevents tumor microenvironment formation. However, residual ROS, by way of sustaining myofibroblast presence, can facilitate tumor microenvironment formation. Targeting ROS using antioxidants is effective in the mitigation of radiation-related adverse effects, such as growth retardation and myofibroblast induction, and helps protect normal tissues.


Assuntos
Miofibroblastos/metabolismo , Miofibroblastos/efeitos da radiação , Doses de Radiação , Antioxidantes/farmacologia , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Dano ao DNA/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Miofibroblastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS One ; 15(10): e0240108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002096

RESUMO

Dose assessment is an important issue for radiation emergency medicine to determine appropriate clinical treatment. Hematopoietic tissues are extremely vulnerable to radiation exposure. A decrease in blood cell count following radiation exposure is the first quantitative bio-indicator using hematological techniques. We further examined induction of oxidative stress biomarkers in residual lymphocytes to identify new biomarkers for dosimetry. In vivo whole-body radiation to mice exposed to 5 Gy significantly induces DNA double-strand breaks, which were visualized by γ-H2AX in mouse blood cells. Mouse blood smears and peripheral blood mononuclear cells (PBMC) isolated from irradiated mice were used for immunostaining for oxidative biomarkers, parkin or Nrf2. Parkin is the E3 ubiquitin ligase, which is normally localized in the cytoplasm, is relocated to abnormal mitochondria with low membrane potential (ΔΨm), where it promotes clearance via mitophagy. Nrf2 transcription factor controls the major cellular antioxidant responses. Both markers of oxidative stress were more sensitive and persistent over time than nuclear DNA damage. In conclusion, parkin and Nrf2 are potential biomarkers for use in radiation dosimetry. Identification of several biological markers which show different kinetics for radiation response is essential for radiation dosimetry that allows the assessment of radiation injury and efficacy of clinical treatment in emergency radiation incidents. Radiation-induced oxidative damage is useful not only for radiation dose assessment but also for evaluation of radiation risks on humans.


Assuntos
Leucócitos Mononucleares/efeitos da radiação , Fator 2 Relacionado a NF-E2/análise , Estresse Oxidativo/efeitos da radiação , Ubiquitina-Proteína Ligases/análise , Irradiação Corporal Total/efeitos adversos , Animais , Biomarcadores/análise , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Leucócitos Mononucleares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Anesth ; 34(1): 36-46, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617003

RESUMO

PURPOSE: Fluid therapy focused on glycocalyx (GCX) protection in hemorrhagic shock is a current focus of research. Hydroxyethyl starch (HES) solution is commonly used for fluid resuscitation; however, its effects on the GCX remain unclear. The primary aim of this study was to explore the protective effect of HES130 in maintaining GCX thickness and reducing plasma syndecan-1 expression. METHODS: An acute hemorrhage murine model with the dorsal skin chambers was used to measure GCX thickness and to evaluate vascular permeability. Groups of mice were treated with normal saline (NS), albumin (NS-A), HES130 (NS-V), or no exsanguination or infusion (C). We measured syndecan-1 plasma concentrations, performed blood gas analysis, and analyzed the 7-day cumulative mortality. RESULTS: GCX thickness in NS mice was significantly reduced compared to that in group C, but no other groups showed a difference compared to group C. The plasma concentration of syndecan-1 was significantly higher in NS mice than in group C. There were no significant differences in the fluorescence intensity of dextran in the interstitial space. HES70 leakage was suppressed in NS-V mice compared to those in other groups. HES70 was localized to the inner vessel wall in C, NS, and NS-A mice, but not in group NS-V. Blood gas analysis indicated that pH and lactate showed the greatest improvements in NS-V mice. The 7-day cumulative mortality rate was the highest in group NS. CONCLUSION: Resuscitation with HES130 protected the GCX and suppressed vascular permeability of HES70 during early stages of acute massive hemorrhage.


Assuntos
Glicocálix , Choque Hemorrágico , Animais , Modelos Animais de Doenças , Hidratação , Derivados de Hidroxietil Amido/farmacologia , Camundongos , Ressuscitação
20.
In Vivo ; 33(5): 1477-1484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31471395

RESUMO

BACKGROUND/AIM: Leukocyte activation is thought to be a major step in sepsis-induced pulmonary edema. We attempted to confirm whether pulmonary edema can be reproduced under intravital microscopy in a model of transfusion-related acute lung injury (TRALI) using MHC class I-specific antibody. MATERIALS AND METHODS: The surface pulmonary microcirculation was observed using an epi-fluorescence microscope through a thoracic window in 50 male mice. Monoclonal MHC class I-specific antibody (Ab) was administered to the animals, while the control group received saline. The leukocytes and macro-molecular leakage in the pulmonary circulation were analyzed. RESULTS: Leukocytes accumulated in the capillaries (52.5±12.7 leukocytes per designated area in Ab group vs. 20.8±3.1 in control). The air-containing alveolus area significantly shrank from 2,224.9±934.9 µm2 to 509.7±380.8 µm2 in the Ab group. CONCLUSION: Pulmonary edema develops rapidly following leukocyte accumulation in the lung. We confirmed that leukocyte accumulation without an underlining condition is sufficient to induce pulmonary edema.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Antígenos H-2/imunologia , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Biomarcadores , Biópsia , Contagem de Células Sanguíneas , Gasometria , Modelos Animais de Doenças , Injeções Intravenosas , Masculino , Camundongos , Imagem Óptica , Edema Pulmonar/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA